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Abstract

Results of experimental and numerical simulations of the downward turbulent gas flow laden with dispersed solid particles in a ver-
tical pipe are presented. The influence of the particles on the turbulence was studied at moderate particle concentrations. The radial pro-
files of the axial and radial velocity components and of the turbulent kinetic energy of the carrier (gas) and the dispersed phases (50 lm
spherical glass particles) were measured using two-component laser Doppler anemometer (LDA). Calculations were performed at both
experimental and superset conditions with various size and material of particles. The mathematical formulation employs a set of equa-
tions in Euler variables for description of the transport processes in the fluid and disperse phases. The addition of particles into a tur-
bulent carrier flow decreases the level of turbulence of the gas phase because of particles involvement into fluctuation motion. A
significant anisotropy of fluctuations of the particle velocity is found. The amplitude of turbulent fluctuations of particle velocity in
the axial direction is much higher than that in the radial direction.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Dispersed two-phase turbulent flows are widely encoun-
tered in both environmental and engineering field. Numer-
ous natural atmospheric gas-dispersed (air-particle) flows
include sand, dust and rain storms, tornados, smog, smoke.
Gas flows laden with solid particles or droplets occur in
many industrial applications such as gas cleaning and
pneumatic transport systems, different power-generating
facilities.

Particle-laden flow is a complex system with behavior
determined by many factors intervening. In turbulent mul-
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tiphase flows all phases can be in slip and fluctuating
motion and interactions between the phases are very com-
plicated. The full two-way coupling of the turbulent fluctu-
ations must be taken into account because even a small
loading of the disperse phase to single-phase flow can
greatly affect the characteristics of the continuous phase
and cause cardinal changes in the flow pattern. This is asso-
ciated, first of all, with the diversity of the properties of
disperse phase, resulting in versatile modes of dispersed
two-phase gas-dispersed flows. A change in concentration
and size of particles may lead to both quantitative and
qualitative restructuring of flow (for example, to earlier
laminar-turbulent transition or, on the contrary, to lamina-
rization of flow).

Development of methods for the simulation of two-
phase gas-dispersed flows is one of the most complex
problems in the present-day fluid mechanics. Nevertheless,
the extensive use of gas-dispersed flows for practical
applications has stimulated numerous investigations of
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Nomenclature

CD drag coefficient
DxP, DrP coefficients of turbulent diffusion of particles in

the axial and radial directions, m2/s
d particle diameter, m
g acceleration of gravity, m/s2

gk, ge coefficients of involvement of particles (response
to) into microfluctuation motion of the gas
phase

k turbulence kinetic energy, m2/s2

L mixing length, m
MP mass loading ratio
P pressure, Pa
R gas constant, J/(mol K)
R pipe radius, m
Re Reynolds number of flow

ReP ¼ qd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � UPÞ2 þ ðV � V PÞ2

q
=l Reynolds num-

ber of particle
ReT = k2/(ev) turbulence Reynolds number
Stk Stokes number in the large-scale fluctuation mo-

tion
T temperature, K
Tu turbulence intensity
U, V mean velocity in axial and radial directions, m/s
humi = �mT(oU/or) turbulent stresses in gas, m2/s2

huPmPi turbulent stresses in the dispersed phase, m2/s2

hu2i, hm2i mean-square fluctuation velocities in the axial
and radial directions, m2/s2

U� friction velocity, m/s
W ¼ ð1þ Re2=3

P =6Þ correction function (Reynolds num-
ber correction factor)

wt, wn particle momentum recovery factors in the tan-
gential and normal directions to the channel
wall

x, r axial and radial coordinates, m
y distance from the wall, m

Greek symbols

e dissipation rate of turbulence kinetic energy,
m2/s3

U volume concentration of particles

CE = mT/hu2i turbulent scale of gas
l dynamic viscosity, (N s)/m2

m kinematic viscosity, m2/s
Xe = (15m/e)1/2 time microscale, s
XE Eulerian time macroscale, s
XL Lagrangian time macroscale, s
XeL time of interaction between particle and energy-

carrying eddies, s
q density, kg/m3

s = qPd2/(18 lW) particle dynamic relaxation time, s

Subscripts

0 parameter on the pipe axis
1 parameter at the inlet
A unladen air flow
i current calculation in the axial direction
i � 1 preceding calculation in the axial direction
P particle
T parameter of turbulence
W parameter on the wall
+ dimensionless parameters in the wall coordi-

nates

Symbol

h i ensemble average

Acronym

DNS direct numerical simulation
LES large-eddy simulation
LDA laser doppler anemometry
LRN low-Reynolds-number
PDF probability density function
PIV particle image velocimetry

2108 M.A. Pakhomov et al. / International Journal of Heat and Mass Transfer 50 (2007) 2107–2116
hydromechanics of flows with solid particles. Some of
known numerous recent generalizing studies are given in
the list of references [1–10]. At the same time, number of
important aspects of two-phase flows, have been studied
inadequately, and the experimental data and physical
models developed so far are fragmentary and often
contradictory.

This explains importance of detailed experimental stud-
ies and development a valid mathematical models for
description of such flows.

The purpose of the present paper is the experimental
and numerical investigation of the structure of downward
turbulent gas-dispersed flows in a vertical pipe at moderate
loading ratios MP < 0.35.

2. Experimental set-up

Simultaneous measurements of tracers and particles
were carried out with the experimental setup (described
in detail in [10]) of the particle laden downward turbulent
pipe flow at constant Reynolds number Re = 15,300.
Spherical glass particles having an average diameter of
50 lm (root-mean-square deviation �5 lm) and density
�2550 kg/m3 were used as dispersed phase. The distance
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from the particles entrance section to the measuring cross-
section was equal 1380 mm. The facility operates in an
open (with respect to gas and dispersed phase) circuit. This
scheme enables one to assurance determine the cross to
pipe average concentration (gas-to-solid mass loading
ratio) of the dispersed phase with the desired accuracy
through direct independent measurements of the flow rates
of the gas and solid particles. The use of an open circuit
further is valuable in easy control of the flow rates of both
gas and dispersed phases. Particle mass loading is defined
as the ratio of the mass of particles to the mass of the fluid
phase in the flow.

The test section was a 2500 mm long vertical pipe of
stainless steel with inner diameter of 2R = 46 mm. A slit
12 mm wide for the inlet and outlet of probing beams of
a two-component laser Doppler anemometer (LDA 10 by
Dantec, Denmark) was milled in the wall at the distance
of 1380 mm (x/2R = 30) from the particle entrance section.
Air was delivered into the test section from compressed-air
flasks via the receiver and pressure regulator providing a
constant gas flow rate (±1%). A particle two-liter feeder
was mounted above the entrance of the pipe. In order to
obtain a gas-dispersed flow, a constant particle mass flow
rate is fed into the air pipe flow by a particle feeder system.
The particles were taken up by the air flow, carried to the
test section, and were deposited in a gravitational chamber.
Tracer particles with a size in the range 2–3 lm were intro-
duced into the flow for measurements of the carrier phase
velocity; a Dantec-made seeding generator was used for
this purpose. The pipe cross section was scanned using a
57H00 traverse system by Dantec.

3. Formulation of the problem

The mathematical formulation of the problem and its
numerical realization largely correspond to the model
developed in [11,12]. The main improvement is that here
we have performed a calculation of a turbulent isothermal
pipe gas–solid flow taking into account the collisions of
particles with the pipe wall. The dispersed phase motion
is simulated within the Eulerian approach and largely cor-
responds to the numerical model developed in [12]. The
Eulerian approach is advantageous over the combined
Eulerian–Lagrangian description in that one type of equa-
tions is used for description of the transport processes in
the gas and dispersed phases. In addition, the description
of transport of tiny particles creates no problems because
here we deal with a limiting transition to the case of
zero-mass impurity diffusion.

The volume concentration of the dispersed phase is low
(U < 10�4), and the particles are quite small (diameter
d < 200 lm). In the case of a two-phase flow, the particle
collisions may be ignored for a volume concentration of
the dispersed phase of U < 10�3 (according to the data
of Volkov et al. [7]). We assume that the particles interact
with the confining surface ignoring the effect of slipping
and rotation after the collisions.
4. The set of basic equations

4.1. Gas phase

The set of continuity and momentum equations describ-
ing the gas phase motion within a two-phase gas-dispersed
flow in the boundary layer approximation takes the form

oU
ox
þ 1

r
oðrV Þ

or
¼ 0

q U
oU
ox
þ V

r
oðrUÞ

or

� �
¼ � oP

ox
þ 1

r
o

or
rðlþ lTÞ

oU
or

� �

� 3

4d
CDqUðU � UPÞj~U � ~U Pj

q ¼ P=ðRT Þ:
ð1Þ

The equation for the gas phase motion has an additional
term responsible for interphase dynamic interaction.

4.2. Two-parameter k–e model of turbulence

The turbulent characteristics of the fluid phase are cal-
culated using the Nagano–Tagawa LRN k–e turbulence
model (1990) [13], modified for the case of dispersed phase
presented. The transport equations for the kinetic energy of
turbulence k and for its dissipation rate e, modified for the
case of presence of the dispersed phase, have the form

q U
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� �
þ e

k
ðCe1f1P� Ce2eqf2Þ þ Se: ð3Þ

The constants and damping functions have the form [13]

Cl ¼ 0:09; rk ¼ 1:4; re ¼ 1:3;

Ce1 ¼ 1:45; Ce2 ¼ 1:9; f 1 ¼ 1; P ¼ lT

oU
or

� �2

;

f2 ¼ ½1� expð�yþ=6Þ�2½1� 0:3 expf�ðRe3=4
T =6:5Þ2g�;

fl ¼ ½1� expð�yþ=26Þ�2ð1þ 4:1=Re3=4
T Þ:

The coefficient of turbulent viscosity lT and turbulent
stresses of gas phase are calculated within the two-param-
eter k–e model,

lT ¼ Clflqk2=e; huvi ¼ �mT

oU
or
:

The terms, which characterize additional dissipation of
turbulence energy and exchange of energy with averaged
motion in Eq. (2), are determined according to Volkov
et al. [7],

Sk ¼ �
2MPqk

s
expð�XL=sÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

� gklTðU � UPÞ
oU
ox

oMP

ox|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

: ð4Þ
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Here, the term (I) denotes the additional dissipation of
turbulent energy due to because of the presence of small
particles, and (II) denotes the energy exchange with aver-
aged motion through averaged interphase slip at a nonuni-
form distribution of particle concentration.

The terms, which characterize the effect of small parti-
cles on the rate of dissipation of turbulent energy of gas
and the opposite effect on turbulence in Eq. (3) (see [7])

Se ¼ �
2MPqPe

s
expð�Xe=sÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

þ 2

3
geqe ðU � U PÞ

oMP

ox
þ ðV � V PÞ

oMP

or

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

; ð5Þ

where (I) denotes the effect of small particles on the rate of
turbulent energy dissipation of carrier flow, and (II) de-
notes the inverse effect of particles on the turbulence due
to the averaged slip and nonuniform distribution of the dis-
persed phase.

We use the relation suggested by Simonin et al. [14] to
calculate the time macroscale of turbulence XE in the core
region of flow. The integral Eulerian scale of turbulence for
gas in the near wall region is determined by the relation
given by Derevich [15],

XE
þ ¼ XEU �=m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XE
þ

� 	2

0
þ XE

þ
� 	2

W

q
; XE

þ
� 	

W
� 10:

The correlation between the Lagrangian XL and Eulerian
XE time scales of turbulence for small particles has the
form XL � 0.608XE [15].

The relations for axial and radial velocity fluctuations of
gas are likewise borrowed from Derevich [15].

The coefficients of involvement of particles into turbu-
lent motion of gas flow in Eqs. (4) and (5) have the form
[7,15]

gk ¼ XeL=s� 1þ expð�XeL=sÞ;
ge ¼ Xe=s� 1þ expð�Xe=sÞ:

Here, Xe = (15m/e)1/2 is the Eulerian time microscale of tur-
bulence. The time of interaction between a particle and en-
ergy-carrying eddies of the gas phase XeL is determined by
the relations [15]

XeL ¼ Xe; j~U � ~UPjXe
6 CE

CE=j~U � ~U Pj; j~U � ~U PjXe > CE

(
; ð6Þ

where CE = mT/ hu2i is the geometric scale of turbulence of
the carrier phase, and s = qPd2/(18 lW) is the dynamic
relaxation time of particles.

4.3. Dispersed phase

One of the methods of constructing the set of equations
for the description of processes of momentum transfer in
the dispersed phase is that of using a kinetic equation for
the probability density function (PDF) for the particle
velocity in a turbulent flow. The equation for PDF is
derived on the assumption that the emergence of velocity
fluctuations of the dispersed phase is caused by the interac-
tion between particles and turbulent fluctuations of gas
which are modeled by Gaussian random functions. The
simulation of a real turbulent flow by Gaussian process is
an approximate method; however, this method brings sat-
isfactory practical results. An equation of probability den-
sity of particle distribution by coordinates, velocity, and
temperature in turbulent flow [7,15] is introduced for tran-
sition from a dynamic stochastic equation describing the
paths of individual particles of the Langevin type to a con-
tinuous simulation of the ensemble of the dispersed phase.
The kinetic equation for PDF may yield a set of equations
for simulation of the dynamics and heat transfer of the dis-
persed phase in the Eulerian continuous approach (see, for
example, [4,7–9,11,12,14–16]).

Numerous recent studies [7–9,14–17] reveal that, for the
conditions examined in this paper, the main forces acting
on a particle in turbulent flow are the forces of turbopho-
resis, aerodynamic drag, and gravity. The results of DNS
and LES calculations [16] were used to demonstrate that
the transport of small particles is largely affected by the
gas turbulence and inertial forces. The effect of the Magnus
and Saffman forces and of the force due to pressure gradi-
ent, as well as the associated mass and Basset effects, are
ignored in view of their smallness.

The Derevich model (2002) [15] is used to determine the
velocity components of the dispersed phase and the mean-
square values of the particle velocity distribution. The set
of equations of transport of the dispersed phase in cylindri-
cal coordinates for the axisymmetric case has the form
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VI
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ð7Þ
The axial and radial transport of particles is due to the
effect of the following force factors: (I), convection of
momentum; (II), the force of turbophoresis caused by the
nonuniformity of turbulent energy of the dispersed phase;
(III), the term responsible for the correlations of fluctua-
tions of the axial and radial components of particle veloc-
ity; (IV), the force of aerodynamic drag; (V), the diffusion
travel of particles due to the gradient of their concentra-
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tion; and (VI), the term which allows for the effect of the
azimuthal component of velocity of disperse phase on the
particle transport.

Here, huPvPi denotes the correlation of fluctuations of
the axial and radial components of particle velocities (tur-
bulent stresses in the dispersed phase) and is written as [15]

huPvPi ¼ qPhuvi|fflfflffl{zfflfflffl}
I

� s
2
hv2

Pi
oU P

or|fflfflfflfflfflffl{zfflfflfflfflfflffl}
II

: ð8Þ

In Eq. (8) the turbulent stresses in the dispersed phase
are caused by the involvement of particles into the turbu-
lent motion of the carrier gas phase (I) and by the transport
of particle momentum as a result of random motion of par-
ticles in the radial direction (II) [15].

Here, DxP and DrP are the coefficients of turbulent diffu-
sion of particles in the axial and radial directions, defined
by the random motion of particles and their entrainment
by energy-carrying eddies of the gas flow [15],

DxP ¼ sðhu2
Pi þ pPhu2iÞ; DrP ¼ sðhv2

Pi þ pPhv2iÞ:

The functions describing the involvement of particles into
the turbulent motion of the carrier gas phase are [15]

qP ¼ 1� expð�XeL=sÞ; pP ¼ XeL=s� qP:

The last term in the Eq. (7) for VP simulates the effect of
centrifugal force (caused by the presence of fluctuation
motion of particles in the azimuthal direction) on the trans-
port of the dispersed phase. The application of this
approach suggested by Sijercic et al. [17] enables one to
simplify the set of Eq. (7) for transport of the dispersed
phase by abandoning the equation for transport of the azi-
muthal particle velocities and fluctuations.

The equations of mean-square fluctuations of the veloc-
ity of particles in the axial and radial directions have the
form as in [15].
5. Boundary conditions

Conditions of symmetry (the absence of radial flux of
momentum in the gas and dispersed phases) were preas-
signed on the pipe axis,

oU
or
¼ V ¼ oU P

or
¼ V P ¼

ohu2
Pi

or
¼ ohv2

Pi
or
¼ ok

or
¼ oe

or
¼ 0:

The no-slip and impermeability conditions are valid on the
wall for the gas phase velocity. The following conditions
are preassigned for the kinetic turbulent energy of gas
and for the rate of turbulent energy dissipation on the wall:

U ¼ V ¼ 0; k ¼ 0; eW ¼ m
o2k
or2

� �
W

:

The boundary conditions for the averaged axial and
radial velocities of the dispersed phase for a smooth wall,
ignoring the interaction between particles and elements of
roughness, have the following form [15]:
UP ¼
1� wt
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� �1=2

� V P
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huPvPiW; V P ¼ 0:

The boundary conditions for the fluctuation compo-
nents of the dispersed phase velocity for a smooth wall
are [15]
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or
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Here, we take wt = wn = 0.9.
As a result of collisions with the pipe wall without slip-

ping, a part of momentum of incident particles will lost,
and the radial component of velocity of the dispersed phase
changes the sign

U 00P ¼ wtU 0P
hv2

Pi
00 ¼ w2

nhv2
Pi
0
:

The prime indicates the value of the parameter prior to col-
lision with the wall surface, and the double prime – after
the collision.

The initial distributions of the parameters have the form

U ¼ U 1; V ¼ V 1; T ¼ T 1; MP ¼ MP1; k ¼ k1;

e ¼ e1:

The equations for uniform initial profiles of turbulent
energy k and its dissipation rate e have the forms as in
[18]. The turbulence intensity at the pipe inlet in the axis
take Tu1 = 4%, and in the near wall region (y+ 6 10) �
Tu1 = 5%. We assumed that the turbulence of the gas
phase to be isotropic at the inlet.

6. Numerical realization and testing of the numerical model

The Cranck–Nicholson finite-difference scheme is used
to calculate the parabolic equations. The difference scheme
is of the second order of accuracy in both directions. The
set of Eqs. (1)–(8) is complemented with the boundary con-
ditions and solved by the sweep method using the Thomas
algorithm (see [19]). The longitudinal pressure gradient for
gas was determined using the method of Simuni [20]. The
essence of the method is a constant flow rate condition
for finding the longitudinal gas pressure gradient. In order
to monitor the accuracy of calculations, the law of mass
conservation for the gas was checked by integration over
the channel cross section with known boundary conditions.

A nonuniform logarithmic computational grid was used
in the radial direction. The scheme given in [19] is suitable
for this problem,

ycomp ¼ 1� lnf½bþ 1� y=R�=½b� 1þ y=R�g
ln½ðbþ 1Þ=ðb� 1Þ� ;

where b is the parameter of crowding of points which must
exceed one. In our case, b = 1.03. The distance between the
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penultimate node and the wall is y+ = U�y/v = 1. In the
axial direction, the grid was uniform.

All computations were performed on a 101 � 201 grid.
Auxiliary computations were performed on a 201 � 201
grid. An increase in the number of nodes causes no signif-
icant changes in the calculation results.

We compared the results of our test calculations with
the DNS data and with the measurement results obtained
using the PIV and LDA techniques for an isothermal sin-
gle-phase turbulent pipe flow of air [21], as well as with
the measurement data from [22]. Satisfactory agreement
is observed between the results of numerical predictions
and the measurement data of [21,22] for the longitudinal
mean gas velocity and distributions of mean-square veloc-
ity fluctuations.

7. Comparison with experimental data

The numerical calculation have been compared with
experimental data obtained for the single- and two-phase
turbulent pipe flow when the mean air velocity on the pipe
axis was about 5.2 m/s. The Reynolds number based on the
pipe diameter was Re = 15,300. The spherical glass parti-
cles used in the experiments had the nominal diameter of
50 lm (with the standard deviation 5 lm) and density
qP = 2550 kg/m3. Measurements were performed at two
particle mass loading ratios MP = 0.05 and 0.35, corre-
sponding to solid volume fractions of U = 1.6 � 10�5 and
1.3 � 10�4, respectively.

The axial mean velocity of air and 50 lm particles is
drawn in Fig. 1. The mean velocity distributions of air
for the two-phase flow (not shown on the figure) were same
compared with that for unladen air flow up MP = 0.35 and
were no exceed limits of experimental uncertainty. The
measurements show that the mean velocity of the particles
larger than one of the air within the whole cross-section of
the pipe. We see that the particles axial mean velocity dis-
tribution have a smoother shape as compared with one for
air (for region where 0 < r/R < 0.9). The velocity of the
Fig. 1. Mean axial (streamwise) velocity distributions of the gas phase and
the dispersed particles (glass d = 50 lm) at different mass loading ratio
comparison between experimental (symbols) and numerical (curves)
results. 1,4 – gas phase (unladen flow; MP = 0); 2,5 – particles (MP =
0.05); 3,6 – particles (MP = 0.35).
particles in the near wall region decreases and depends
upon their mass loading. Therefore, the lager value of the
particles concentration leads to the more abrupt shape of
their axial mean velocity distributions. The increasing of
the concentration is likely to result in an intensive momen-
tum transfer between phases in the time-averaged motion
and more closely shapes of velocity profiles of particles
and carrying air.

Fig. 2 demonstrates the comparison between the predic-
tion and experimental distributions of axial fluctuation
intensities of the air hu2i/U0 and particles hu2

Pi=U 0 for var-
ious mass loading. The data of Fig. 2 may lead to the fol-
lowing inferences.

As the solid phase concentration increases, the intensity
of velocity fluctuations decreases due to the involvement of
particles into fluctuation motion; accordingly, a part of the
turbulent energy of gas is extracted. This effect increases
with the number of particles. A decrease in the intensity
of fluctuations of gas velocity causes a decrease in fluctua-
tions of the velocity of disperse phase.

The axial component of fluctuations of particle velocity
increases significantly on approaching to the pipe wall.
This effect is both associated with the intrinsic anisotropy
of turbulence of the gas phase and caused by additional
Fig. 2. Axial mean-square velocity distributions of the (a) gas phase and
the (b) dispersed particles (glass d = 50 lm) at different mass loading ratio
comparison between experimental (symbols) and numerical (curves)
results. 1,6 – gas phase (unladen flow; MP = 0); 2,7 – gas phase (MP =
0.05); 3,8 – gas phase (MP = 0.35); 4,9 – particles (MP = 0.05); 5,10 –
particles (MP = 0.35).
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generation of turbulence during the motion of particles in
the field of gradient of mean axial velocity of the dispersed
phase. Given the maximal value of concentration of the
dispersed phase (MP = 0.35), we have in these experiments
and calculations hu2

Pi=U 0 � 17%, which is higher than the
respective characteristic for gas (hu2i/U0 � 11%). Note that
the degree of involvement of particles into the large-scale
motion of the carrier phase on approaching the pipe wall
decreases with increasing the Stokes number Stk = s/XL.
All of the turbulent time scales decrease on approaching
the wall. It is the high gradients of averaged axial gas veloc-
ity which are mainly responsible for abrupt increase in the
intensity of axial fluctuations of particle velocity in the near
wall region. The nonuniformity of the axial velocity profile
of the carrier phase causes the nonuniformity of the profile
of averaged axial velocity of particles. The particles per-
form intensive radial travel owing to the shift of averaged
motion of gas and to their entrainment by energy-carrying
eddies of the gas phase in the radial direction.

The distributions of the radial velocity fluctuations
intensity of air hv2i/U0 and particles hv2

Pi=U 0 given in
Fig. 3. The intensity of radial velocity fluctuations of par-
ticle and air for the two-phase flow is lower than one for
Fig. 3. Radial mean-square velocity distributions of the (a) gas phase and
the (b) dispersed particles (glass d = 50 lm) at different mass loading ratio
comparison between experimental (symbols) and numerical (curves)
results. 1,6 – gas phase (unladen flow; MP = 0); 2,7 – gas phase (MP =
0.05); 3,8 – gas phase (MP = 0.35); 4,9 – particles (MP = 0.05); 5,10 –
particles (MP = 0.35).
the air of unladen flow. These facts may be interpreted as
follows. The Stokes number in a large-scale fluctuation
motion for the considered conditions is Stk � 1, and it fol-
lows that particles are well-involved into the large-scale
fluctuation motion and extract the energy of turbulent
eddies of the carrier phase. A decrease in the intensity of
transverse fluctuations of the gas phase leads to a decrease
in the fluctuations of small particles. The concentration of
particles has a strong effect on the intensity of fluctuations
of particles and gas over the entire cross section of the pipe.
For example, with the concentration of disperse phase of
MP = 0.35, radial fluctuations decrease almost twice. For
a single-phase flow (MP = 0), we have hv2i/U0 � 4.2%; for
the maximal concentration of particles hv2

Pi=U 0 � 2%. In
the near wall region, the intensity of fluctuations of gas
and particles decreases abruptly because the channel sur-
face ‘‘prevents” the fluctuations of velocity in this direc-
tion. This is demonstrated by experimental and numerical
data.

Fig. 4 display the experimental and numerical prediction
data of the kinetic energy of turbulence of the unladen gas
k and disperse phases kP in a downward flow relatively to
the value of kinetic energy of a single-phase (unladen) air
flow at the pipe axis k0A. The turbulent energy of the gas
phase is estimated by the expression given in [10],
2k ¼
X

i

hu2
i i ¼ hu2iþ hv2iþ hw2i � hu2iþ hv2iþ hu

2iþ hv2i
2

:

Note that the turbulent energy of the dispersed phase is
lower than the kinetic energy of gas over almost the entire
cross section of the pipe except for the near wall region.
The level of turbulence of the disperse phase in central re-
gion of the pipe is observed to decrease (by a factor of al-
most two) with increasing concentration of particles. In the
near wall region, on the contrary, the fluctuation energy of
particles is observed to increase (by a factor of approxi-
mately three). This fact is typical of both experimental
Fig. 4. Dimensionless turbulent kinetic energy distributions of the gas
phase and the dispersed particles (glass d = 50 lm) at different mass
loading ratio comparison between experimental (symbols) and numerical
(curves) results. 1,4 – gas phase (unladen flow; MP = 0); 2,5 – particles
(MP = 0.05); 3,6 – particles (MP = 0.35).



Fig. 6. Dimensionless gas-phase streamwise mean velocity profiles as a
function of the dimensionless wall distance (inner scailing) of unladen
MP = 0 (1) and particulate MP = 0.2 (2,3) air flow. (1) unladen air flow; (2)
with 50 lm glass particles; (3) with 50 lm alumina particles; (4) logarith-
mic law of the wall.
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and numerical data, which points to the adequacy of the
model.

8. Results of numerical calculations and their discussion

8.1. Phase velocity profiles over the pipe cross section

This section gives the results of numerical calculations of
isothermal turbulent heterogeneous air flow with dispersed
phase of particles. The calculations were performed for the
case of downward flow in a vertical pipe of diameter
2R = 50 mm with the air velocity on the pipe axis
U0 = 6 m/s; the friction velocity calculated for a single-phase
air flow U� = 0.354 m/s; Re = U02R/v = 2 � 104; the mass
loading ratio MP = 0.05–0.2; the particle size d = 1–
200 lm; qP = 1000 kg/m3 (plastic), 2550 kg/m3 (glass),
3950 kg/m3 (alumina), and 7800 kg/m3 (iron); the dimen-
sionless relaxation time of particles calculated for the case
of Stokes mode of flow sþ ¼ sU 2

�=v ¼ 2:5� 10�2 � 103

(plastic), s+ = 6.6 � 10�2–103 (glass), s+ = 10�1–4 � 103

(alumina), and s+ = 0.2–8.1 � 103 (iron). The bulk of calcu-
lations were performed for glass particles. The calculations
were performed in the cross section of x/2R = 60, which cor-
responds to fully developed flow.

The radial profiles of axial mean velocity of air laden
with 50 lm glass particles at various mass loading are
shown in Fig. 5. Wee see, that the streamwise velocity of
the gas phase is not different from those in unladen flow
for all the studied cases. The observation that the statistics
of gas is unaffected by presence of 50 lm glass particles for
the case of MP = 0.05–0.2 is in accordance with the above
mentioned experimental observation. The profiles of mean
axial air velocity of the undisturbed flow and flow laden
with 50 lm glass and with 50 lm alumina particles at
MP = 0.2 are given in universal coordinates in Fig. 6. Note
that the profiles of gas velocity in a two-phase flow differ
only slightly from those in a single-phase flow, all other
things being equal. This is due to the low concentration
of particles and their small size.
Fig. 5. Gas-phase streamwise mean velocity profiles of unladen (1) and
particulate with 50 lm glass particles (2–4) air flow at different mass
loading ratio. (1) MP = 0; (2) 0.05; (3) 0.1; (4) 0.2.
The data given in Figs. 5 and 6 indicate that the presence
of low concentration of the dispersed phase (MP < 0.2) has
no significant effect on the profiles of averaged velocity of
the carrier gas phase. A significant effect is made by parti-
cles on the gas turbulence. These data are given in subse-
quent figures.

8.2. The effect of particles on the turbulent energy of gas

Attempts at generalizing the available experimental data
on the effect of the dispersed phase on the turbulence of gas
were made in [10,23–28]. Gore and Crowe [25] suggested to
use the ratio of particle diameter d to turbulent scale L as
the basic dimensionless parameter. The critical value of this
parameter was shown to be d/L � 0.1. Below this value, the
presence of the dispersed phase causes dissipation of turbu-
lence; on the contrary, above this value this presence causes
generation of turbulence by the particles. It was found in
[26] that d/L increases linearly from the channel axis to
confined wall, where d/L = 0.3. The authors of [25–27]
point out that this parameter provides an answer to the
question about the direction of turbulence modulation
effect (attenuation or augment) rather than to the question
about the magnitude of this variation.

The variation of the value of kinetic energy of a two-
phase flow on the pipe axis k0 compared to the value of
energy k0A in a single-phase (unladen) air flow is given in
Fig. 7. for particles of (a) plastic, (b) glass, (c) alumina
and (d) iron. The smallest particles (d = 1 lm) have hardly
any effect on the turbulent energy of the carrier phase.
They are involved into the microfluctuation motion of
the gas phase which is a low-energy motion. The presence
of small particles in the range of sizes treated by us leads
to suppression of gas turbulence. The dissipation effect of
particles increases with their mass concentration and size.
According to our calculation results, the maximal suppres-
sion occurs at d/L � 0.01–0.02 (d � 50–70 lm). As the
parameter d/L increases, the turbulence of the carrier phase



Fig. 7. Modification of gas-phase turbulent kinetic energy with particle size; L � 0. 14R = 3.5 � 10�3 m; (a) plastic, (b) glass, (c) alumina, (d) iron; (1)
MP = 0.05, (2) 0.1, (3) 0.2. Dotted lines: d/L = 0.1 – according to the data of [25], d/L = 0.3 – according to the data of [26] for the near wall region of the
pipe.
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increases because larger particles of the disperse phase are
involved into high-energy fluctuations with more difficulty
and, accordingly, may extract less energy from the gas
phase.

Fig. 8. gives data on the effect of dimensionless relaxa-
tion time of the dispersed phase on turbulence of a two-
phase flow. The parameter Z, which characterizes the
turbulent energy average over the pipe cross section, was
calculated by the relation
Fig. 8. The variation of the average value of gas-phase turbulent kinetic
energy as a function of the relaxation time of dispersed particles at
different mass loading ratio: (1) MP = 0.05, (2) 0.1, (3) 0.2. Dotted –
alumina particles; continuous – glass particles.
Z ¼ 2

R2

Z R

0

k
kA

r dr:

An increase in the particle size results first in a decrease in
the level of gas turbulence. The decrease in the level of tur-
bulent energy may reach approximately 30%. Then, as the
particle inertia increases, the level of turbulence is observed
to rise.
9. Conclusions

A downward turbulent air flow laden with glass solid
particles has been investigated experimentally and numeri-
cally. A numerical model has been developed for calcula-
tion of turbulent gas-dispersed flows in the Eulerian
approximation. The Derevich model (2002) was used to
calculate the transport processes and velocity fluctuations
in the dispersed phase. The turbulent characteristics of
the gas phase were calculated using the Nagano–Tagawa
LRN k–e model modified for the case of the presence of
the dispersed phase. The developed numerical model
enables one to fairly adequately describe the basic regular-
ities of the processes of dynamics and mass transfer of the
dispersed phase in gas-dispersed turbulent pipe flows.

Analysis of calculations under conditions of a two-phase
flow with a low concentration of the dispersed phase
(MP 6 0.35) reveals good agreement between numerical
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and experimental data for the velocities and values of
mean-square fluctuations of phases over the pipe cross
section.

A significant anisotropy of fluctuations of particle veloc-
ity has been found. The amplitude of turbulent fluctuations
of particle velocity in the axial direction is much higher than
that in the radial direction. In addition to being associated
with the inherent anisotropy of turbulence of the gas phase,
this effect is caused by additional generation of turbulence
during the motion of particles in the field of gradient of
averaged axial velocity of the dispersed phase. The intensity
of fluctuations of particle velocity in the axial direction may
be higher than one in the case of the gas phase.

The axial and radial fluctuations of particle velocity
depend strongly on the particle concentration. Loadings
of solid particles into the gas flow causes a decrease in
the level of turbulence of the gas phase because of the
involvement of particles into fluctuation motion, as is evi-
denced by experimental and numerical data.
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